光通信、映像伝送ビジネスの実務者向け専門情報サイト

光通信ビジネスの実務者向け専門誌 - オプトコム

有料会員様向けコンテンツ

NICT、NEC、東北大学、トヨタ自動車東日本が、東北の工場においてSRF無線プラットフォームVer. 2の実証実験に成功

DX/IoT/AI 無料

公衆網とローカル5Gのハイブリッドなネットワークを活用し、無線通信の安定化を実現

 NICT、NEC、東北大学およびトヨタ自動車東日本は11月7日、公衆網とローカル5Gのハイブリッドなネットワークを活用して移動体との無線通信を安定化するSmart Resource Flow(SRF)無線プラットフォームの実験に世界で初めて成功したと発表した。

 NICT、NECおよび東北大学は、製造分野における5G高度化技術の研究開発を推進しており、その中でSRF無線プラットフォーム技術仕様書Ver. 2に対応した無線通信システムを開発した。
 本システムの有効性を稼働中の製造現場で確認するために、トヨタ自動車東日本の宮城大衡工場にて、公衆網(5G/LTE)とローカル5Gを切り替えて移動体との間の無線通信品質を評価する実験を実施した。
 その結果、本システムにより、サービスエリアの広さ等の特性が異なる公衆網とローカル5Gによるハイブリッドなネットワークを活用し、通信が途切れることのない安定化が実現できることを確認した。

背景
 製造現場では、生産効率を向上するため無線通信を用いた製造向けアプリケーションの導入が年々進んでおり、今後も更に増加するものと予想される。例としては、自動搬送車による部品搬送の自動化やトルクレンチ等の工具情報の収集・管理などがある。導入が増加すると、無線通信は干渉や遮蔽の影響により通信品質が不安定になり、遅延やスループットが悪化することがある。その結果、自動搬送車が安全のために停止したり、工具情報が取れず製造ラインが停止するなど、かえって生産効率が下がってしまう。
 このような事態を避けるため、NICTおよびNECは、2015年から、製造現場の無線化を推進するフレキシブル・ファクトリー・プロジェクト(Flexible Factory Project)の活動を実施しており、本活動を通して得られた知見をいかし、異種無線通信の協調制御により無線通信を安定して動作させるSRF無線プラットフォームの技術開発を推進してきた。また、2017年7月に、SRF無線プラットフォームに高い関心を持つ企業と共にフレキシブルファクトリパートナーアライアンス(FFPA)を設立し、技術仕様の標準化を推進してきた。そして、2023年1月に、SRF無線プラットフォームの技術仕様書Ver. 2を策定し、公開した。
 SRF無線プラットフォーム技術仕様書Ver. 2においては、Ver. 1が対象としていた無線LANに加えて、キャリア5G、ローカル5G、LTEも用いたハイブリッドなネットワークの利用が可能になった。これにより、広いエリアに無線通信を提供できる公衆網(キャリア5GやLTE)と、工場の建屋のように金属で囲われて外部からの電波が届きにくいところに局所的に無線通信を提供できるローカル5Gを組み合わせることで、無線通信品質をより安定にさせることが可能となった。NICTおよびNECは、このSRF無線プラットフォーム技術仕様書Ver. 2に対応した無線通信システムを開発した。

図1:SRF 無線プラットフォームを用いた実験システム

稼働中の製造現場における実証実験
 本無線通信システムの有効性を稼働中の製造現場で確認するために、トヨタ自動車東日本の宮城大衡工場にて、図1のような環境で、公衆網とローカル5Gの切替えによる移動体との間の無線通信品質を評価する実験を実施した。実験では、図2のように製造現場で稼働している移動体(自動搬送車)にSRF Deviceを搭載し、約163 m離れた工場A、Bの間を往復させた。ローカル5Gの周波数帯は4.8GHz〜4.9GHzの電波を使用した。

図2:SRF Deviceを搭載した移動体(自動搬送車)

 自動搬送車は、図1の青線のようにローカル5Gでデータを送信しながら、ローカル5Gの基地局が設置してある工場Aからスタートして工場Bに向かう。工場Aから離れるにつれてローカル5Gの通信品質が悪化していくが、SRF無線プラットフォームでは図1の青点線のように公衆網側にもバックアップ経路を用意しておき、SRF Deviceが無線の品質情報(受信信号強度など)を基にローカル5Gよりも公衆網の方が送信に適していると判断した場合に、図1の緑線のようにデータ送信経路を公衆網側に切り替えることで、通信品質を維持する。
 本実験では、このSRF無線プラットフォームにより、ローカル5Gと公衆網をシームレスに切り替えて安定して通信を継続することができるかを検証した。

図3:実験結果(a)SRF無線プラットフォームを使用していない場合

 実験結果を示した図3の(a)のようにSRF無線プラットフォームを使用していない場合、工場Bに入った直後辺りでローカル5Gの圏外になり通信が遮断し、アプリケーションの通信が途絶した。その後、通信可能な経路をサーチして公衆網に切り替えて通信を再開したが、約9.75秒の間、通信が遮断した。また、ローカル5Gの通信遮断の直前には往復遅延も大幅に悪化し、最大で約1.01秒になった(拡大図は図3(c)左 参照)。

図3 実験結果:(b)SRF無線プラットフォームを使用した場合

図3 実験結果:(c)切替付近の拡大図(左:SRFを使用していない場合、右:SRFを使用した場合)
青線:ローカル5G経由の往復遅延、緑線:公衆網経由の往復遅延
赤線:ローカル5G経由の受信信号強度、オレンジ線:公衆網経由の受信信号強度

 これに対し、図3(b)のようにSRF無線プラットフォームを使用した場合、工場Bに入る少し前からデータ送信経路を公衆網に切り替えることで、経路切替時の通信遮断時間を約0.14秒に短縮し、アプリケーションの通信が途絶することなく安定して通信を継続できることを確認した(拡大図は図3(c)右 参照)。また、自動搬送車が工場Bを出て工場Aに近付き、ローカル5Gの受信信号強度が良くなってくると、SRF Deviceは再びローカル5Gに切り替えて通信を継続できた。
 この結果により、サービスエリアの広さ等の特性が異なる公衆網とローカル5Gによるハイブリッドなネットワークを活用し、通信が途切れることのない安定化を実現できるSRF無線プラットフォームの効果を実証することに世界で初めて成功しました。

今後の展望
 今後、NICT、NEC、東北大学およびトヨタ自動車東日本は、本実証実験の結果をいかし、SRF無線プラットフォームを工場における安定した無線通信を利活用できるプラットフォームとして実用化を目指し、技術開発及び標準仕様の策定と認証制度の整備を推進していくという。

各機関の役割分担
情報通信研究機構:実験計画立案、実験実施、データ分析
NEC:ローカル5Gの実験試験局の免許取得※、実験システム構築、実験実施
東北大学:実験における無線通信関連の技術支援
トヨタ自動車東日本:実験環境整備および実験実施支援

※ローカル5G用実験試験局(基地局相当2局、陸上移動局相当9局)の免許を東北総合通信局から受けた。

本研究開発の一部は、総務省SCOPE(国際標準獲得型)JPJ000595の委託により実施しているという。